/*
* Copyright 2003-2006, 2009, 2017, 2020 United States Government, as represented
* by the Administrator of the National Aeronautics and Space Administration.
* All rights reserved.
*
* The NASAWorldWind/WebWorldWind platform is licensed under the Apache License,
* Version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License
* at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed
* under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, either express or implied. See the License for the
* specific language governing permissions and limitations under the License.
*
* NASAWorldWind/WebWorldWind also contains the following 3rd party Open Source
* software:
*
* ES6-Promise – under MIT License
* libtess.js – SGI Free Software License B
* Proj4 – under MIT License
* JSZip – under MIT License
*
* A complete listing of 3rd Party software notices and licenses included in
* WebWorldWind can be found in the WebWorldWind 3rd-party notices and licenses
* PDF found in code directory.
*/
/**
* @exports Globe
*/
define([
'../geom/Angle',
'../error/ArgumentError',
'../geom/BoundingBox',
'../globe/ElevationModel',
'../geom/Line',
'../geom/Location',
'../util/Logger',
'../geom/Position',
'../projections/ProjectionWgs84',
'../geom/Sector',
'../globe/Tessellator',
'../geom/Vec3',
'../util/WWMath'],
function (Angle,
ArgumentError,
BoundingBox,
ElevationModel,
Line,
Location,
Logger,
Position,
ProjectionWgs84,
Sector,
Tessellator,
Vec3,
WWMath) {
"use strict";
/**
* Constructs an ellipsoidal Globe with default radii for Earth (WGS84).
* @alias Globe
* @constructor
* @classdesc Represents an ellipsoidal globe. The default configuration represents Earth but may be changed.
* To configure for another planet, set the globe's equatorial and polar radii properties and its
* eccentricity-squared property.
* <p>
* A globe uses a Cartesian coordinate system whose origin is at the globe's center. It's Y axis points to the
* north pole, the Z axis points to the intersection of the prime meridian and the equator,
* and the X axis completes a right-handed coordinate system, is in the equatorial plane and 90 degrees east
* of the Z axis.
* <p>
* All Cartesian coordinates and elevations are in meters.
* @param {ElevationModel} elevationModel The elevation model to use for this globe.
* @param {GeographicProjection} projection The projection to apply to the globe. May be null or undefined,
* in which case no projection is applied and the globe is a WGS84 ellipsoid.
* @throws {ArgumentError} If the specified elevation model is null or undefined.
*/
var Globe = function (elevationModel, projection) {
if (!elevationModel) {
throw new ArgumentError(Logger.logMessage(Logger.LEVEL_SEVERE, "Globe",
"constructor", "Elevation model is null or undefined."));
}
/**
* This globe's elevation model.
* @type {ElevationModel}
*/
this.elevationModel = elevationModel;
/**
* This globe's equatorial radius in meters.
*
* @type {Number}
* @default WGS 84 semi-major axis (6378137.0 meters)
*/
this.equatorialRadius = WorldWind.WGS84_SEMI_MAJOR_AXIS;
var f = 1 / WorldWind.WGS84_INVERSE_FLATTENING;
/**
* This globe's polar radius in meters.
* @type {Number}
* @default WGS 84 semi-minor axis (6356752.3142 meters). Taken from NGA.STND.0036_1.0.0_WGS84, section 3.2.
*/
this.polarRadius = this.equatorialRadius * (1 - f);
/**
* This globe's eccentricity squared.
* @type {Number}
* @default WGS 84 first eccentricity squared (6.694379990141e-3). Taken from NGA.STND.0036_1.0.0_WGS84, section 3.3.
*/
this.eccentricitySquared = (2 * f) - (f * f);
/**
* The tessellator used to create this globe's terrain.
* @type {Tessellator}
*/
this.tessellator = new Tessellator();
// Internal. Intentionally not documented.
this._projection = projection || new ProjectionWgs84();
// Internal. Intentionally not documented.
this._offset = 0;
// Internal. Intentionally not documented.
this.offsetVector = new Vec3(0, 0, 0);
// A unique ID for this globe. Intentionally not documented.
this.id = ++Globe.idPool;
this._stateKey = "globe " + this.id.toString() + " ";
};
Globe.idPool = 0; // Used to assign unique IDs to globes for use in their state keys.
Object.defineProperties(Globe.prototype, {
/**
* A string identifying this globe's current state. Used to compare states during rendering to
* determine whether globe-state dependent cached values must be updated. Applications typically do not
* interact with this property.
* @memberof Globe.prototype
* @readonly
* @type {String}
*/
stateKey: {
get: function () {
return this._stateKey + this.elevationModel.stateKey + "offset " + this.offset.toString() + " "
+ this.projection.stateKey;
}
},
/**
* Indicates whether this globe is 2D and continuous with itself -- that it should scroll continuously
* horizontally.
* @memberof Globe.prototype
* @readonly
* @type {Boolean}
*/
continuous: {
get: function () {
return this.projection.continuous;
}
},
/**
* The projection used by this globe.
* @memberof Globe.prototype
* @default {@link ProjectionWgs84}
* @type {GeographicProjection}
*/
projection: {
get: function () {
return this._projection;
},
set: function (projection) {
if (!projection) {
throw new ArgumentError(Logger.logMessage(Logger.LEVEL_SEVERE, "Globe",
"projection", "missingProjection"));
}
if (this.projection != projection) {
this.tessellator = new Tessellator();
}
this._projection = projection;
}
},
/**
* The projection limits of the associated projection.
* @memberof Globe.prototype
* @type {Sector}
*/
projectionLimits: {
get: function () {
return this._projection.projectionLimits;
}
},
/**
* An offset to apply to this globe when translating between Geographic positions and Cartesian points.
* Used during scrolling to position points appropriately.
* Applications typically do not access this property. It is used by the associated globe.
* @memberof Globe.prototype
* @type {Number}
*/
offset: {
get: function () {
return this._offset;
},
set: function (offset) {
this._offset = offset;
this.offsetVector[0] = offset * 2 * Math.PI * this.equatorialRadius;
}
}
});
/**
* Indicates whether this is a 2D globe.
* @returns {Boolean} true if this is a 2D globe, otherwise false.
*/
Globe.prototype.is2D = function () {
return this.projection.is2D;
};
/**
* Computes a Cartesian point from a specified position.
* See this class' Overview section for a description of the Cartesian coordinate system used.
* @param {Number} latitude The position's latitude.
* @param {Number} longitude The position's longitude.
* @param {Number} altitude The position's altitude.
* @param {Vec3} result A reference to a pre-allocated {@link Vec3} in which to return the computed X,
* Y and Z Cartesian coordinates.
* @returns {Vec3} The result argument.
* @throws {ArgumentError} If the specified result argument is null or undefined.
*/
Globe.prototype.computePointFromPosition = function (latitude, longitude, altitude, result) {
if (!result) {
throw new ArgumentError(Logger.logMessage(Logger.LEVEL_SEVERE, "Globe", "computePointFromPosition",
"missingResult"));
}
return this.projection.geographicToCartesian(this, latitude, longitude, altitude, this.offsetVector, result);
};
/**
* Computes a Cartesian point from a specified location.
* See this class' Overview section for a description of the Cartesian coordinate system used.
* @param {Number} latitude The position's latitude.
* @param {Number} longitude The position's longitude.
* @param {Vec3} result A reference to a pre-allocated {@link Vec3} in which to return the computed X,
* Y and Z Cartesian coordinates.
* @returns {Vec3} The result argument.
* @throws {ArgumentError} If the specified result argument is null or undefined.
*/
Globe.prototype.computePointFromLocation = function (latitude, longitude, result) {
if (!result) {
throw new ArgumentError(Logger.logMessage(Logger.LEVEL_SEVERE, "Globe", "computePointFromLocation",
"missingResult"));
}
return this.computePointFromPosition(latitude, longitude, 0, result);
};
/**
* Computes a grid of Cartesian points within a specified sector and relative to a specified Cartesian
* reference point.
* <p>
* This method is used to compute a collection of points within a sector. It is used by tessellators to
* efficiently generate a tile's interior points. The number of points to generate is indicated by the numLon
* and numLat parameters.
* <p>
* For each implied position within the sector, an elevation value is specified via an array of elevations. The
* calculation at each position incorporates the associated elevation. There must be numLat x numLon elevations
* in the array.
*
* @param {Sector} sector The sector for which to compute the points.
* @param {Number} numLat The number of latitudinal points in the grid.
* @param {Number} numLon The number of longitudinal points in the grid.
* @param {Number[]} elevations An array of elevations to incorporate in the point calculations. There must be
* one elevation value in the array for each generated point. Elevations are in meters. There must be
* numLat x numLon elevations in the array.
* @param {Vec3} referencePoint The X, Y and Z Cartesian coordinates to subtract from the computed coordinates.
* This makes the computed coordinates relative to the specified point.
* @param {Float32Array} result A typed array to hold the computed coordinates. It must be at least of
* size numLat x numLon. The points are returned in row major order, beginning with the row of minimum latitude.
* @returns {Float32Array} The specified result argument.
* @throws {ArgumentError} if the specified sector, elevations array or results arrays are null or undefined, or
* if the lengths of any of the arrays are insufficient.
*/
Globe.prototype.computePointsForGrid = function (sector, numLat, numLon, elevations, referencePoint, result) {
if (!sector) {
throw new ArgumentError(Logger.logMessage(Logger.LEVEL_SEVERE, "Globe",
"computePointsFromPositions", "missingSector"));
}
if (numLat < 1 || numLon < 1) {
throw new ArgumentError(Logger.logMessage(Logger.LEVEL_SEVERE, "Globe", "computePointsFromPositions",
"Number of latitude or longitude locations is less than one."));
}
var numPoints = numLat * numLon;
if (!elevations || elevations.length < numPoints) {
throw new ArgumentError(Logger.logMessage(Logger.LEVEL_SEVERE, "Globe", "computePointsFromPositions",
"Elevations array is null, undefined or insufficient length."));
}
if (!result || result.length < numPoints) {
throw new ArgumentError(Logger.logMessage(Logger.LEVEL_SEVERE, "Globe", "computePointsFromPositions",
"Result array is null, undefined or insufficient length."));
}
return this.projection.geographicToCartesianGrid(this, sector, numLat, numLon, elevations, referencePoint,
this.offsetVector, result);
};
/**
* Computes a geographic position from a specified Cartesian point.
*
* See this class' Overview section for a description of the Cartesian coordinate system used.
*
* @param {Number} x The X coordinate.
* @param {Number} y The Y coordinate.
* @param {Number} z The Z coordinate.
* @param {Position} result A pre-allocated {@link Position} instance in which to return the computed position.
* @returns {Position} The specified result position.
* @throws {ArgumentError} If the specified result argument is null or undefined.
*/
Globe.prototype.computePositionFromPoint = function (x, y, z, result) {
if (!result) {
throw new ArgumentError(Logger.logMessage(Logger.LEVEL_SEVERE, "Globe", "computePositionFromPoint",
"missingResult"));
}
this.projection.cartesianToGeographic(this, x, y, z, this.offsetVector, result);
// Wrap if the globe is continuous.
if (this.continuous) {
if (result.longitude < -180) {
result.longitude += 360;
} else if (result.longitude > 180) {
result.longitude -= 360;
}
}
return result;
};
/**
* Computes the radius of this globe at a specified location.
* @param {Number} latitude The locations' latitude.
* @param {Number} longitude The locations' longitude.
* @returns {Number} The radius at the specified location.
*/
Globe.prototype.radiusAt = function (latitude, longitude) {
var sinLat = Math.sin(latitude * Angle.DEGREES_TO_RADIANS),
rpm = this.equatorialRadius / Math.sqrt(1.0 - this.eccentricitySquared * sinLat * sinLat);
return rpm * Math.sqrt(1.0 + (this.eccentricitySquared * this.eccentricitySquared - 2.0 * this.eccentricitySquared) * sinLat * sinLat);
};
/**
* Computes the normal vector to this globe's surface at a specified location.
* @param {Number} latitude The location's latitude.
* @param {Number} longitude The location's longitude.
* @param {Vec3} result A pre-allocated {@Link Vec3} instance in which to return the computed vector. The returned
* normal vector is unit length.
* @returns {Vec3} The specified result vector. The returned normal vector is unit length.
* @throws {ArgumentError} If the specified result argument is null or undefined.
*/
Globe.prototype.surfaceNormalAtLocation = function (latitude, longitude, result) {
if (!result) {
throw new ArgumentError(Logger.logMessage(Logger.LEVEL_SEVERE, "Globe", "surfaceNormalAtLocation",
"missingResult"));
}
// For backwards compatibility, check whether the projection defines a surfaceNormalAtLocation function
// before calling it. If it's not available, use the old code to compute the normal.
if (this.projection.surfaceNormalAtLocation) {
return this.projection.surfaceNormalAtLocation(this, latitude, longitude, result);
}
if (this.is2D()) {
result[0] = 0;
result[1] = 0;
result[2] = 1;
return result;
}
var cosLat = Math.cos(latitude * Angle.DEGREES_TO_RADIANS),
cosLon = Math.cos(longitude * Angle.DEGREES_TO_RADIANS),
sinLat = Math.sin(latitude * Angle.DEGREES_TO_RADIANS),
sinLon = Math.sin(longitude * Angle.DEGREES_TO_RADIANS);
result[0] = cosLat * sinLon;
result[1] = sinLat;
result[2] = cosLat * cosLon;
return result.normalize();
};
/**
* Computes the normal vector to this globe's surface at a specified Cartesian point.
* @param {Number} x The point's X coordinate.
* @param {Number} y The point's Y coordinate.
* @param {Number} z The point's Z coordinate.
* @param {Vec3} result A pre-allocated {@Link Vec3} instance in which to return the computed vector. The returned
* normal vector is unit length.
* @returns {Vec3} The specified result vector.
* @throws {ArgumentError} If the specified result argument is null or undefined.
*/
Globe.prototype.surfaceNormalAtPoint = function (x, y, z, result) {
if (!result) {
throw new ArgumentError(Logger.logMessage(Logger.LEVEL_SEVERE, "Globe", "surfaceNormalAtPoint",
"missingResult"));
}
// For backwards compatibility, check whether the projection defines a surfaceNormalAtPoint function
// before calling it. If it's not available, use the old code to compute the normal.
if (this.projection.surfaceNormalAtPoint) {
return this.projection.surfaceNormalAtPoint(this, x, y, z, result);
}
if (this.is2D()) {
result[0] = 0;
result[1] = 0;
result[2] = 1;
return result;
}
var eSquared = this.equatorialRadius * this.equatorialRadius,
polSquared = this.polarRadius * this.polarRadius;
result[0] = x / eSquared;
result[1] = y / polSquared;
result[2] = z / eSquared;
return result.normalize();
};
/**
* Computes the north-pointing tangent vector to this globe's surface at a specified location.
* @param {Number} latitude The location's latitude.
* @param {Number} longitude The location's longitude.
* @param {Vec3} result A pre-allocated {@Link Vec3} instance in which to return the computed vector. The returned
* tangent vector is unit length.
* @returns {Vec3} The specified result vector.
* @throws {ArgumentError} If the specified result argument is null or undefined.
*/
Globe.prototype.northTangentAtLocation = function (latitude, longitude, result) {
if (!result) {
throw new ArgumentError(Logger.logMessage(Logger.LEVEL_SEVERE, "Globe", "northTangentAtLocation",
"missingResult"));
}
return this.projection.northTangentAtLocation(this, latitude, longitude, result);
};
/**
* Computes the north-pointing tangent vector to this globe's surface at a specified Cartesian point.
* @param {Number} x The point's X coordinate.
* @param {Number} y The point's Y coordinate.
* @param {Number} z The point's Z coordinate.
* @param {Vec3} result A pre-allocated {@Link Vec3} instance in which to return the computed vector. The returned
* tangent vector is unit length.
* @returns {Vec3} The specified result vector.
* @throws {ArgumentError} If the specified result argument is null or undefined.
*/
Globe.prototype.northTangentAtPoint = function (x, y, z, result) {
if (!result) {
throw new ArgumentError(Logger.logMessage(Logger.LEVEL_SEVERE, "Globe", "northTangentAtPoint",
"missingResult"));
}
return this.projection.northTangentAtPoint(this, x, y, z, this.offsetVector, result);
};
/**
* Indicates whether this globe intersects a specified frustum.
* @param {Frustum} frustum The frustum to test.
* @returns {Boolean} true if this globe intersects the frustum, otherwise false.
* @throws {ArgumentError} If the specified frustum is null or undefined.
*/
Globe.prototype.intersectsFrustum = function (frustum) {
if (!frustum) {
throw new ArgumentError(
Logger.logMessage(Logger.LEVEL_SEVERE, "Globe", "intersectsFrustum", "missingFrustum"));
}
if (this.is2D()) {
var bbox = new BoundingBox();
bbox.setToSector(Sector.FULL_SPHERE, this, this.elevationModel.minElevation,
this.elevationModel.maxElevation);
return bbox.intersectsFrustum(frustum);
}
if (frustum.far.distance <= this.equatorialRadius)
return false;
if (frustum.left.distance <= this.equatorialRadius)
return false;
if (frustum.right.distance <= this.equatorialRadius)
return false;
if (frustum.top.distance <= this.equatorialRadius)
return false;
if (frustum.bottom.distance <= this.equatorialRadius)
return false;
if (frustum.near.distance <= this.equatorialRadius)
return false;
return true;
};
/**
* Computes the first intersection of this globe with a specified line. The line is interpreted as a ray;
* intersection points behind the line's origin are ignored.
* @param {Line} line The line to intersect with this globe.
* @param {Vec3} result A pre-allocated Vec3 in which to return the computed point.
* @returns {boolean} true If the ray intersects the globe, otherwise false.
* @throws {ArgumentError} If the specified line or result argument is null or undefined.
*/
Globe.prototype.intersectsLine = function (line, result) {
if (!line) {
throw new ArgumentError(
Logger.logMessage(Logger.LEVEL_SEVERE, "Globe", "intersectWithRay", "missingLine"));
}
if (!result) {
throw new ArgumentError(Logger.logMessage(Logger.LEVEL_SEVERE, "Globe", "intersectsLine", "missingResult"));
}
// Taken from "Mathematics for 3D Game Programming and Computer Graphics, Third Edition", Section 6.2.3.
//
// Note that the parameter n from equations 6.70 and 6.71 is omitted here. For an ellipsoidal globe this
// parameter is always 1, so its square and its product with any other value simplifies to the identity.
var vx = line.direction[0],
vy = line.direction[1],
vz = line.direction[2],
sx = line.origin[0],
sy = line.origin[1],
sz = line.origin[2],
t;
if (this.is2D()) {
if (vz == 0 && sz != 0) { // ray is parallel to and not coincident with the XY plane
return false;
}
t = -sz / vz; // intersection distance, simplified for the XY plane
if (t < 0) { // intersection is behind the ray's origin
return false;
}
result[0] = sx + vx * t;
result[1] = sy + vy * t;
result[2] = sz + vz * t;
return true;
} else {
var eqr = this.equatorialRadius, eqr2 = eqr * eqr, m = eqr / this.polarRadius, m2 = m * m, a, b, c, d;
a = vx * vx + m2 * vy * vy + vz * vz;
b = 2 * (sx * vx + m2 * sy * vy + sz * vz);
c = sx * sx + m2 * sy * sy + sz * sz - eqr2;
d = b * b - 4 * a * c; // discriminant
if (d < 0) {
return false;
}
t = (-b - Math.sqrt(d)) / (2 * a);
// check if the nearest intersection point is in front of the origin of the ray
if (t > 0) {
result[0] = sx + vx * t;
result[1] = sy + vy * t;
result[2] = sz + vz * t;
return true;
}
t = (-b + Math.sqrt(d)) / (2 * a);
// check if the second intersection point is in the front of the origin of the ray
if (t > 0) {
result[0] = sx + vx * t;
result[1] = sy + vy * t;
result[2] = sz + vz * t;
return true;
}
// the intersection points were behind the origin of the provided line
return false;
}
};
/**
* Returns the time at which any elevations associated with this globe last changed.
* @returns {Number} The time in milliseconds relative to the Epoch of the most recent elevation change.
*/
Globe.prototype.elevationTimestamp = function () {
return this.elevationModel.timestamp;
};
/**
* Returns this globe's minimum elevation.
* @returns {Number} This globe's minimum elevation.
*/
Globe.prototype.minElevation = function () {
return this.elevationModel.minElevation
};
/**
* Returns this globe's maximum elevation.
* @returns {Number} This globe's maximum elevation.
*/
Globe.prototype.maxElevation = function () {
return this.elevationModel.maxElevation
};
/**
* Returns the minimum and maximum elevations within a specified sector of this globe.
* @param {Sector} sector The sector for which to determine extreme elevations.
* @returns {Number[]} The An array containing the minimum and maximum elevations.
* @throws {ArgumentError} If the specified sector is null or undefined.
*/
Globe.prototype.minAndMaxElevationsForSector = function (sector) {
if (!sector) {
throw new ArgumentError(
Logger.logMessage(Logger.LEVEL_SEVERE, "Globe", "minAndMaxElevationsForSector",
"missingSector"));
}
return this.elevationModel.minAndMaxElevationsForSector(sector);
};
/**
* Returns the elevation at a specified location.
* @param {Number} latitude The location's latitude in degrees.
* @param {Number} longitude The location's longitude in degrees.
* @returns {Number} The elevation at the specified location, in meters. Returns zero if the location is
* outside the coverage area of this elevation model.
*/
Globe.prototype.elevationAtLocation = function (latitude, longitude) {
return this.elevationModel.elevationAtLocation(latitude, longitude);
};
/**
* Returns the elevations at locations within a specified sector.
* @param {Sector} sector The sector for which to determine the elevations.
* @param {Number} numLat The number of latitudinal sample locations within the sector.
* @param {Number} numLon The number of longitudinal sample locations within the sector.
* @param {Number} targetResolution The desired elevation resolution, in degrees. (To compute degrees from
* meters, divide the number of meters by the globe's radius to obtain radians and convert the result to degrees.)
* @param {Number[]} result An array in which to return the requested elevations.
* @returns {Number} The resolution actually achieved, which may be greater than that requested if the
* elevation data for the requested resolution is not currently available.
* @throws {ArgumentError} If the specified sector or result array is null or undefined, or if either of the
* specified numLat or numLon values is less than one.
*/
Globe.prototype.elevationsForGrid = function (sector, numLat, numLon, targetResolution, result) {
if (!sector) {
throw new ArgumentError(
Logger.logMessage(Logger.LEVEL_SEVERE, "Globe", "elevationsForSector", "missingSector"));
}
if (numLat <= 0 || numLon <= 0) {
throw new ArgumentError(Logger.logMessage(Logger.LEVEL_SEVERE, "Globe",
"elevationsForSector", "numLat or numLon is less than 1"));
}
if (!result || result.length < numLat * numLon) {
throw new ArgumentError(Logger.logMessage(Logger.LEVEL_SEVERE, "Globe",
"elevationsForSector", "missingArray"));
}
return this.elevationModel.elevationsForGrid(sector, numLat, numLon, targetResolution, result);
};
return Globe;
});