Provides math constants and functions.
- Source:
Methods
(static) boundingRectForUnitQuad(transformMatrix) → {Rectangle}
Computes the bounding rectangle for a unit quadrilateral after applying a transformation matrix to that
quadrilateral.
Parameters:
Name | Type | Description |
---|---|---|
transformMatrix |
Matrix | The matrix to apply to the unit quadrilateral. |
- Source:
Returns:
The computed bounding rectangle.
- Type
- Rectangle
(static) cbrt(x) → {Number}
Returns the cube root of a specified value.
Parameters:
Name | Type | Description |
---|---|---|
x |
Number | The value whose cube root is computed. |
- Source:
Returns:
The cube root of the specified number.
- Type
- Number
(static) clamp(value, minimum, maximum) → {Number}
Returns a number within the range of a specified minimum and maximum.
Parameters:
Name | Type | Description |
---|---|---|
value |
Number | The value to clamp. |
minimum |
Number | The minimum value to return. |
maximum |
Number | The maximum value to return. |
- Source:
Returns:
The minimum value if the specified value is less than the minimum, the maximum value if
the specified value is greater than the maximum, otherwise the value specified is returned.
- Type
- Number
(static) computeEllipsoidalGlobeIntersection(line, equatorialRadius, polarRadius, result) → {boolean}
Computes the Cartesian intersection point of a specified line with an ellipsoid.
Parameters:
Name | Type | Description |
---|---|---|
line |
Line | The line for which to compute the intersection. |
equatorialRadius |
Number | The ellipsoid's major radius. |
polarRadius |
Number | The ellipsoid's minor radius. |
result |
Vec3 | A pre-allocated Vec3 instance in which to return the computed point. |
- Deprecated:
- utilize the Globe.intersectsLine method attached implementation
- Source:
Throws:
-
If the specified line or result is null or undefined.
- Type
- ArgumentError
Returns:
true if the line intersects the ellipsoid, otherwise false
- Type
- boolean
(static) computeTriangleIntersection(line, vertex0, vertex1, vertex2, result) → {boolean}
Computes the Cartesian intersection point of a specified line with a triangle.
Parameters:
Name | Type | Description |
---|---|---|
line |
Line | The line for which to compute the intersection. |
vertex0 |
Vec3 | The triangle's first vertex. |
vertex1 |
Vec3 | The triangle's second vertex. |
vertex2 |
Vec3 | The triangle's third vertex. |
result |
Vec3 | A pre-allocated Vec3 instance in which to return the computed point. |
- Source:
Throws:
-
If the specified line, vertex or result is null or undefined.
- Type
- ArgumentError
Returns:
true if the line intersects the triangle, otherwise false
- Type
- boolean
(static) computeTriangleListIntersection(line, points, results) → {boolean}
Computes the Cartesian intersection point(s) of a specified line with a non-indexed list of
triangle vertices.
Parameters:
Name | Type | Description |
---|---|---|
line |
Line | The line for which to compute the intersection(s). |
points |
Array.<Vec3> | The list of triangle vertices arranged such that each 3-tuple, (i,i+1,i+2), specifies a triangle. |
results |
Array.<Vec3> | The Cartesian intersection point(s) if any. |
- Source:
Throws:
-
If any of the arguments is not supplied.
- Type
- ArgumentError
Returns:
true if the line intersects any triangle, otherwise false
- Type
- boolean
(static) computeTriangleNormal(a, b, c) → {Vec3}
Returns the normal vector corresponding to the triangle defined by three vertices (a, b, c).
Parameters:
Name | Type | Description |
---|---|---|
a |
Vec3 | The triangle's first vertex. |
b |
Vec3 | The triangle's second vertex. |
c |
Vec3 | The triangle's third vertex. |
- Source:
Throws:
-
If the specified vertices are null or undefined.
- Type
- ArgumentError
Returns:
the triangle's unit-length normal vector.
- Type
- Vec3
(static) computeTriStripIntersections(line, points, indices, results)
Computes the Cartesian intersection points of a specified line with a triangle strip. The triangle strip
is specified by a list of vertex points and a list of indices indicating the triangle strip tessellation
of those vertices. The triangle strip indices are interpreted in the same manner as WebGL, where each
index indicates a vertex position rather than an actual index into the points array (e.g. a triangle
strip index of 1 indicates the XYZ tuple starting at array index 3). This is equivalent to calling
computeTriangleIntersection for each individual triangle in the triangle strip, but is potentially much
more efficient.
Parameters:
Name | Type | Description |
---|---|---|
line |
Line | The line for which to compute the intersection. |
points |
Array | The list of vertex points, organized as a list of tightly-packed XYZ tuples. |
indices |
Array | The list of triangle strip indices, organized as a list of vertex positions. |
results |
Array | A pre-allocated array instance in which to return the intersection points as Vec3 instances. |
- Source:
Throws:
-
If the specified line, points, indices or results is null or undefined.
- Type
- ArgumentError
(static) fabs(a) → {Number}
Computes the absolute value of a specified value.
Parameters:
Name | Type | Description |
---|---|---|
a |
Number | The value whose absolute value to compute. |
- Source:
Returns:
The absolute value of the specified number.
- Type
- Number
(static) fmod(number, modulus) → {Number}
Computes the floating-point modulus of a specified number.
Parameters:
Name | Type | Description |
---|---|---|
number |
Number | The number whose modulus to compute. |
modulus |
Number | The modulus. |
- Source:
Returns:
The remainder after dividing the number by the modulus: number % modulus.
- Type
- Number
(static) fract(number) → {Number}
Returns the fractional part of a specified number
Parameters:
Name | Type | Description |
---|---|---|
number |
Number | The number whose fractional part to compute. |
- Source:
Returns:
The fractional part of the specified number: number - floor(number).
- Type
- Number
(static) gudermannianInverse(latitude) → {Number}
Calculates the Gudermannian inverse used to unproject Mercator projections.
Parameters:
Name | Type | Description |
---|---|---|
latitude |
Number | The latitude in degrees. |
- Source:
Returns:
The Gudermannian inverse for the specified latitude.
- Type
- Number
(static) horizonDistanceForGlobeRadius(radius, altitude) → {Number}
Computes the distance to a globe's horizon from a viewer at a given altitude.
Only the globe's ellipsoid is considered; terrain height is not incorporated. This returns zero if the radius is zero
or if the altitude is less than or equal to zero.
Parameters:
Name | Type | Description |
---|---|---|
radius |
Number | The globe's radius, in meters. |
altitude |
Number | The viewer's altitude above the globe, in meters. |
- Source:
Throws:
-
If the specified globe radius is negative.
- Type
- ArgumentError
Returns:
The distance to the horizon, in model coordinates.
- Type
- Number
(static) interpolate(amount, value1, value2) → {Number}
Computes a number between two numbers.
Parameters:
Name | Type | Description |
---|---|---|
amount |
Number | The relative distance between the numbers at which to compute the new number. This should normally be a number between 0 and 1 but whatever number is specified is applied. |
value1 |
Number | The first number. |
value2 |
Number | The second number. |
- Source:
Returns:
the computed value.
- Type
- Number
(static) isPowerOfTwo(value) → {boolean}
Indicates whether a specified value is a power of two.
Parameters:
Name | Type | Description |
---|---|---|
value |
Number | The value to test. |
- Source:
Returns:
true
if the specified value is a power of two,
otherwise false
.
- Type
- boolean
(static) localCoordinateAxesAtPoint(origin, globe, xAxisResult, yAxisResult, zAxisResult)
Computes the axes of a local coordinate system on the specified globe, placing the resultant axes in the specified
axis arguments.
Upon return the specified axis arguments contain three orthogonal axes identifying the X, Y, and Z axes. Each
axis has unit length.
The local coordinate system is defined such that the Z axis maps to the globe's surface normal at the point, the
Y axis maps to the north pointing tangent, and the X axis maps to the east pointing tangent.
Parameters:
Name | Type | Description |
---|---|---|
origin |
Vec3 | The local coordinate system origin, in model coordinates. |
globe |
Globe | The globe the coordinate system is relative to. |
xAxisResult |
Vec3 | A pre-allocated Vec3 in which to return the computed X axis. |
yAxisResult |
Vec3 | A pre-allocated Vec3 in which to return the computed Y axis. |
zAxisResult |
Vec3 | A pre-allocated Vec3 in which to return the computed Z axis. |
- Source:
Throws:
-
If any argument is null or undefined.
- Type
- ArgumentError
(static) max(value1, value2) → {Number}
Returns the maximum of two specified numbers.
Parameters:
Name | Type | Description |
---|---|---|
value1 |
Number | The first value to compare. |
value2 |
Number | The second value to compare. |
- Source:
Returns:
The maximum of the two specified values.
- Type
- Number
(static) mod(number, modulus) → {Number}
Returns the integer modulus of a specified number. This differs from the % operator in that
the result is always positive when the modulus is positive. For example -1 % 10 = -1,
whereas mod(-1, 10) = 1.
Parameters:
Name | Type | Description |
---|---|---|
number |
Number | The number whose modulus to compute. |
modulus |
Number | The modulus. |
- Source:
Returns:
The remainder after dividing the number by the modulus.
- Type
- Number
(static) normalizeAngle360(degrees) → {Number}
Restricts an angle to the range [0, 360] degrees, wrapping angles outside the range.
Wrapping takes place as though traversing the edge of a unit circle;
angles less than 0 wrap back to 360, while angles greater than 360 wrap back to 0.
Parameters:
Name | Type | Description |
---|---|---|
degrees |
Number | the angle to wrap in degrees |
- Source:
Returns:
the specified angle wrapped to [0, 360] degrees
- Type
- Number
(static) perspectiveFrustumRectangle(viewportWidth, viewportHeight, distance) → {Rectangle}
Computes the coordinates of a rectangle carved out of a perspective projection's frustum at a given
distance in model coordinates. This returns an empty rectangle if the specified distance is zero.
Parameters:
Name | Type | Description |
---|---|---|
viewportWidth |
Number | The viewport width, in screen coordinates. |
viewportHeight |
Number | The viewport height, in screen coordinates. |
distance |
Number | The distance along the negative Z axis, in model coordinates. |
- Source:
Throws:
-
If the specified width or height is less than or equal to zero, or if the specified distance is negative.
- Type
- ArgumentError
Returns:
The frustum rectangle, in model coordinates.
- Type
- Rectangle
(static) perspectiveNearDistance(viewportWidth, viewportHeight, distanceToSurface) → {Number}
Computes the maximum near clip distance for a perspective projection that avoids clipping an object at a
given distance from the eye point.
This computes a near clip distance appropriate for use in perspectiveFrustumRect and
Matrix.setToPerspectiveProjection. The given distance should specify the smallest distance between the
eye and the object being viewed, but may be an approximation if an exact distance is not required.
Parameters:
Name | Type | Description |
---|---|---|
viewportWidth |
Number | The viewport width, in screen coordinates. |
viewportHeight |
Number | The viewport height, in screen coordinates. |
distanceToSurface |
Number | The distance from the perspective eye point to the nearest object, in meters. |
- Source:
Throws:
-
If the specified width or height is less than or equal to zero, or if the specified distance is negative.
- Type
- ArgumentError
Returns:
The maximum near clip distance, in meters.
- Type
- Number
(static) perspectiveNearDistanceForFarDistance(farDistance, farResolution, depthBits) → {Number}
Computes the near clip distance that corresponds to a specified far clip distance and resolution at the far clip
plane.
This computes a near clip distance appropriate for use in perspectiveFrustumRect
and setToPerspectiveProjection. This returns zero if either the distance or the
resolution are zero.
Parameters:
Name | Type | Description |
---|---|---|
farDistance |
Number | The far clip distance, in meters. |
farResolution |
Number | The depth resolution at the far clip plane, in meters. |
depthBits |
Number | The number of bit-planes in the depth buffer. |
- Source:
Throws:
-
If either the distance or resolution is negative, or if the depth bits is less than one.
- Type
- ArgumentError
Returns:
The near clip distance, in meters.
- Type
- Number
(static) perspectivePixelSize(viewportWidth, viewportHeight, distance) → {Number}
Computes the vertical size of a pixel in model coordinates at a given distance from the eye point in a
perspective projection. This returns zero if the specified distance is zero. The returned size is
undefined if the distance is less than zero.
This method assumes the model of a screen composed of rectangular pixels, where pixel coordinates denote
infinitely thin space between pixels. The units of the returned size are in model coordinates per pixel
(usually meters per pixel).
Parameters:
Name | Type | Description |
---|---|---|
viewportWidth |
Number | The viewport width, in screen coordinates. |
viewportHeight |
Number | The viewport height, in screen coordinates. |
distance |
Number | The distance from the perspective eye point at which to determine pixel size, in model coordinates. |
- Source:
Throws:
-
If the specified width or height is less than or equal to zero, or if the specified distance is negative.
- Type
- ArgumentError
Returns:
The pixel size at the specified distance from the eye point, in model coordinates per
pixel.
- Type
- Number
(static) powerOfTwoFloor(value) → {Number}
Returns the value that is the nearest power of 2 less than or equal to the given value.
Parameters:
Name | Type | Description |
---|---|---|
value |
Number | the reference value. The power of 2 returned is less than or equal to this value. |
- Source:
Returns:
the value that is the nearest power of 2 less than or equal to the reference value
- Type
- Number
(static) signum(value) → {Number}
Determine the sign of a number.
Parameters:
Name | Type | Description |
---|---|---|
value |
Number | The value to determine the sign of. |
- Source:
Returns:
1, -1, or 0, depending on the sign of the value.
- Type
- Number