/*
* Copyright 2003-2006, 2009, 2017, 2020 United States Government, as represented
* by the Administrator of the National Aeronautics and Space Administration.
* All rights reserved.
*
* The NASAWorldWind/WebWorldWind platform is licensed under the Apache License,
* Version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License
* at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed
* under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, either express or implied. See the License for the
* specific language governing permissions and limitations under the License.
*
* NASAWorldWind/WebWorldWind also contains the following 3rd party Open Source
* software:
*
* ES6-Promise – under MIT License
* libtess.js – SGI Free Software License B
* Proj4 – under MIT License
* JSZip – under MIT License
*
* A complete listing of 3rd Party software notices and licenses included in
* WebWorldWind can be found in the WebWorldWind 3rd-party notices and licenses
* PDF found in code directory.
*/
/**
* @exports TerrainTile
*/
define([
'../error/ArgumentError',
'../util/Logger',
'../geom/Matrix',
'../util/Tile'
],
function (ArgumentError,
Logger,
Matrix,
Tile) {
"use strict";
/**
* Constructs a terrain tile.
* @alias TerrainTile
* @constructor
* @augments Tile
* @classdesc Represents a portion of a globe's terrain. Applications typically do not interact directly with
* this class.
* @param {Sector} sector The sector this tile covers.
* @param {Level} level The level this tile is associated with.
* @param {Number} row This tile's row in the associated level.
* @param {Number} column This tile's column in the associated level.
* @throws {ArgumentError} If the specified sector or level is null or undefined or the row or column arguments
* are less than zero.
*/
var TerrainTile = function (sector, level, row, column) {
Tile.call(this, sector, level, row, column); // args are checked in the superclass' constructor
/**
* The transformation matrix that maps tile local coordinates to model coordinates.
* @type {Matrix}
*/
this.transformationMatrix = Matrix.fromIdentity();
/**
* The tile's model coordinate points.
* @type {Float32Array}
*/
this.points = null;
/**
* Indicates the state of this tile when the model coordinate points were last updated. This is used to
* invalidate the points when this tile's state changes.
* @type {String}
*/
this.pointsStateKey = null;
/**
* Indicates the state of this tile when the model coordinate VBO was last uploaded to GL. This is used to
* invalidate the VBO when the tile's state changes.
* @type {String}
*/
this.pointsVboStateKey = null;
// Internal use. Intentionally not documented.
this.neighborMap = {};
this.neighborMap[WorldWind.NORTH] = null;
this.neighborMap[WorldWind.SOUTH] = null;
this.neighborMap[WorldWind.EAST] = null;
this.neighborMap[WorldWind.WEST] = null;
// Internal use. Intentionally not documented.
this._stateKey = null;
// Internal use. Intentionally not documented.
this._elevationTimestamp = null;
// Internal use. Intentionally not documented.
this.scratchArray = [];
};
TerrainTile.prototype = Object.create(Tile.prototype);
Object.defineProperties(TerrainTile.prototype, {
/**
* A string identifying the state of this tile as a function of the elevation model's timestamp and this
* tile's neighbors. Used to compare states during rendering to determine whether cached values must be
* updated. Applications typically do not interact with this property.
* @type {String}
* @memberof TerrainTile.prototype
* @readonly
*/
stateKey: {
get: function () {
if (!this._stateKey) {
this._stateKey = this.computeStateKey();
}
return this._stateKey;
}
}
});
/**
* Indicates the level of the tile adjacent to this tile in a specified direction. This returns null when this
* tile has no neighbor in that direction.
* @param {String} direction The cardinal direction. Must be one of WorldWind.NORTH, WorldWind.SOUTH,
* WorldWind.EAST or WorldWind.WEST.
* @returns {Level} The neighbor tile's level in the specified direction, or null if there is no neighbor.
*/
TerrainTile.prototype.neighborLevel = function (direction) {
return this.neighborMap[direction];
};
/**
* Specifies the level of the tile adjacent to this tile in a specified direction.
* @param {String} direction The cardinal direction. Must be one of WorldWind.NORTH, WorldWind.SOUTH,
* WorldWind.EAST or WorldWind.WEST.
* @param {Level} level The neighbor tile's level in the specified direction, or null to indicate that there is
* no neighbor in that direction.
*/
TerrainTile.prototype.setNeighborLevel = function (direction, level) {
this.neighborMap[direction] = level;
this._stateKey = null; // cause updates to any neighbor-dependent cached state
};
/**
* Computes a point on the terrain at a specified location.
* @param {Number} latitude The location's latitude.
* @param {Number} longitude The location's longitude.
* @param {Vec3} result A pre-allocated Vec3 in which to return the computed point.
* @returns {Vec3} The result argument set to the computed point.
* @throws {ArgumentError} If the specified result argument is null or undefined.
*/
TerrainTile.prototype.surfacePoint = function (latitude, longitude, result) {
if (!result) {
throw new ArgumentError(
Logger.logMessage(Logger.LEVEL_SEVERE, "TerrainTile", "surfacePoint", "missingResult"));
}
var tileSector = this.sector,
minLat = tileSector.minLatitude,
maxLat = tileSector.maxLatitude,
minLon = tileSector.minLongitude,
maxLon = tileSector.maxLongitude,
tileWidth = this.tileWidth,
tileHeight = this.tileHeight,
s, t, si, ti, rowStride, vertices, points, k, sf, tf, x, y, z;
// Compute the location's horizontal (s) and vertical (t) parameterized coordinates within the tiles 2D grid of
// points as a floating-point value in the range [0, tileWidth] and [0, tileHeight]. These coordinates indicate
// which cell contains the location, as well as the location's placement within the cell. Note that this method
// assumes that the caller has tested whether the location is contained within the tile's sector.
s = (longitude - minLon) / (maxLon - minLon) * tileWidth;
t = (latitude - minLat) / (maxLat - minLat) * tileHeight;
// Get the coordinates for the four vertices defining the cell this point is in. Tile vertices start in the lower
// left corner and proceed in row major order across the tile. The tile contains one more vertex per row or
// column than the tile width or height. Vertices in the points array are organized in the
// following order: lower-left, lower-right, upper-left, upper-right. The cell's diagonal starts at the
// lower-left vertex and ends at the upper-right vertex.
si = s < tileWidth ? Math.floor(s) : tileWidth - 1;
ti = t < tileHeight ? Math.floor(t) : tileHeight - 1;
rowStride = tileWidth + 1;
vertices = this.points;
points = this.scratchArray; // temporary working buffer
k = 3 * (si + ti * rowStride); // lower-left and lower-right vertices
for (var i = 0; i < 6; i++) {
points[i] = vertices[k + i];
}
k = 3 * (si + (ti + 1) * rowStride); // upper-left and upper-right vertices
for (var j = 6; j < 12; j++) {
points[j] = vertices[k + (j - 6)];
}
// Compute the location's corresponding point on the cell in tile local coordinates,
// given the fractional portion of the parameterized s and t coordinates. These values indicate the location's
// relative placement within the cell. The cell's vertices are defined in the following order: lower-left,
// lower-right, upper-left, upper-right. The cell's diagonal starts at the lower-right vertex and ends at the
// upper-left vertex.
sf = (s < tileWidth ? s - Math.floor(s) : 1);
tf = (t < tileHeight ? t - Math.floor(t) : 1);
if (sf > tf) {
result[0] = points[0] + sf * (points[3] - points[0]) + tf * (points[6] - points[0]);
result[1] = points[1] + sf * (points[4] - points[1]) + tf * (points[7] - points[1]);
result[2] = points[2] + sf * (points[5] - points[2]) + tf * (points[8] - points[2]);
}
else {
result[0] = points[9] + (1 - sf) * (points[6] - points[9]) + (1 - tf) * (points[3] - points[9]);
result[1] = points[10] + (1 - sf) * (points[7] - points[10]) + (1 - tf) * (points[4] - points[10]);
result[2] = points[11] + (1 - sf) * (points[8] - points[11]) + (1 - tf) * (points[5] - points[11]);
}
result[0] += this.referencePoint[0];
result[1] += this.referencePoint[1];
result[2] += this.referencePoint[2];
return result;
};
TerrainTile.prototype.update = function (dc) {
Tile.prototype.update.call(this, dc);
var elevationTimestamp = dc.globe.elevationTimestamp();
if (this._elevationTimestamp != elevationTimestamp) {
this._elevationTimestamp = elevationTimestamp;
this._stateKey = null; // cause updates to any elevation-dependent cached state
}
};
// Intentionally not documented.
TerrainTile.prototype.computeStateKey = function () {
var array = [];
array.push(this._elevationTimestamp);
array.push(this.neighborMap[WorldWind.NORTH] ? this.neighborMap[WorldWind.NORTH].compare(this.level) : 0);
array.push(this.neighborMap[WorldWind.SOUTH] ? this.neighborMap[WorldWind.SOUTH].compare(this.level) : 0);
array.push(this.neighborMap[WorldWind.EAST] ? this.neighborMap[WorldWind.EAST].compare(this.level) : 0);
array.push(this.neighborMap[WorldWind.WEST] ? this.neighborMap[WorldWind.WEST].compare(this.level) : 0);
return array.join(".");
};
return TerrainTile;
});